Category Archives: Questions

Why are patients flown by fixed wing?

Patients are flown by fixed wing for many different reasons.  These can range from the stable patient involved in an accident, or with a long-term medical condition, wishing to relocate closer to family for rehabilitative care, to the critical heart failure patient requiring intensive care transfer to receive a transplant.  The fixed wing environment differs from the rotor wing environment primarily in that fixed wing travels farther, faster and higher. The fixed wing is primarily a facility-to-facility transport, typically long distance in nature.

Secondly, there are typically more choices of different types of aircraft, and selections that are less expensive per mile and/or per hour to operate.  With licensure and accreditation standards available and easily verifiable, the care provided in the fixed wing environment is the same as the helicopter.  The fixed wing is typically not in competition with the rotor wing in that the rotor wing service typically is for moving a patient from a scene to a primary care facility, or a tertiary care facility to a primary care facility.

What are the benefits of twin-engine vs. single engine?

The debate among users continues with this issue. Some pilots and passengers have always believed two is better than one. On certain levels this is still true today. Anyone flying 100 miles offshore, or over mountainous terrain at night feels better knowing that there are two engines working for him or her. However, with the advent of truly reliable turbine engines, the probability of and engine failure is greatly reduced making the single-engine helicopter a safe and economical choice. A great deal depends on the type of missions flown, and the space required to accomplish it. All medium and large capacity helicopters are multi-engine, needed for the power required to lift the payload.

Air Ambulance – Cardiac Care and “Heart Attacks”

A heart attack occurs when an artery in the heart is blocked by a clot, and the heart muscle supplied by that artery is therefore deprived of oxygen. This causes chest pain, and the muscle is in jeopardy of dying. Untreated, these blockages can permanently damage the heart causing death or an otherwise reduced quality of life.

As with critical injuries, there is a window of time (generally thought to be two hours from symptom onset) in which the heart may be effectively treated before it, and the patient, die or are disabled. At any time in this window, the compromised heart may stop or otherwise require emergency treatment to keep the patient alive. Out of hospital, HEMS ALS has proven effective in dealing with these emergencies. Ultimately, these patients need either special medications or surgical procedures at specialist cardiac intervention hospitals to break up the blood clot, allowing blood and the oxygen it brings to return to the affected heart muscle. Done within those two hours, the heart may be undamaged or damage may be limited, allowing the patient not only to live, but to recover a normal life.

Similar to trauma centers, cardiac intervention centers have been developed to provide the more effective of these increasinglycommon surgical treatments. The scarcity of cardiac intervention centers, particularly outside of urban areas, suggest a role, supported by studies to date, for HEMS in quickly transporting patients, even patients whose hearts have stopped and been restarted, from remote hospitals to these centers.

What are Trauma Transport Protocols in Florida?

Trauma Transport Protocols (TTP) describe the procedures used by the emergency medical services prehospital provider for dispatch of vehicles, assessment of the extent and severity of injuries of trauma patients and determination of the destination (facility) to which trauma alert patients are transported. TTP’s are a legal document that should outline, as accurately as possible, the actual procedures followed by the emergency medical service provider, written within the context of section 395.4045, Florida Statutes and Chapter 64J-2, Florida Administrative Code.


When to Submit TTP’s:

  • Applying for initial licensure as an EMS provider.
  • A change in medical directors for the EMS provider.
  • A change in ownership of the EMS provider.
  • A change in hospital destination for the routine transport of trauma alert patients. Any change in EMS providers or health care facilities that will impact transportation requirements.
  • When the department requests a revision.

The approval period for TTPs is the same as the EMS provider’s two-year licensure period, unless revisions are made to department approved TTPs during that period.

Who Does Not Submit TTPs:

  • A service that provides only inter-facility services and does not respond to the scene of an injury to provide stabilization of injured patients in prehospital settings. The EMS provider needs to submit to the Bureau of EMS either a copy of the Certificate of Public Convenience and Need or a letter from the director or chief of the service stating that it is an inter-facility service only.

Air Ambulance Medicine: Accessing the Future of Health Care

A Public Policy Paper by the MedEvac Foundation International.

Air Ambulance Medical Services Summary

The use of air medical services (AMS) has become an essential component of the health care system. Appropriately used air medical critical care transport saves lives and reduces the cost of health care. It does so by minimizing the time the critically injured and ill spend out of a hospital, by bringing more medical capabilities to the patient than are normally provided by ground emergency medical services, and by quickly getting the patient to the right specialty care.

Dedicated medical helicopters and fixed wing aircraft are mobile flying emergency intensive care units deployed at a moment’s notice to patients whose lives depend on rapid care and transport. While AMS may appear to be expensive on a single-case basis compared with ground ambulance service, examining the benefits behind the cost on an individual and a system-wide basis shows that it is cost-effective. The picture of a helicopter at the scene of a car crash evokes visions not only of the life-saving power of air medical services, but also of the risks of the environment into which they fly. Yet, air medical patient care and transportation actually promises less risk to the patient than does a patient’s hospital stay. “Time is human tissue” is a saying that means death and disability from severe injuries, heart attacks, strokes, medical and surgical complications, and other time-dependent conditions often can be avoided if the right care is provided quickly enough.

AMS is a means to bridge geography and time. As technology provides new, time-sensitive care, the need for AMS will increase. As the costs of the health care system continue to rise, and the availability of even routine health care in rural communities is put at risk, AMS will play an increasingly important role in the delivery of health care. In these days of increased concern about homeland security and emergency preparedness, air medical services provide a valuable medical resource that can transport patients and medical staff long distances, as well as carry medical equipment and medical supplies to the affected area(s). AMS is an integral component of disaster planning and management. The recent experience of hurricanes Ivan, Katrina, and Rita illustrate the essential role of AMS in evacuating critically ill and injured infants and adults from hospitals and nursing facilities as well as providing direct scene support to disaster management teams. Without a prompt and massive AMS response of both dedicated air medical helicopters and fixed wing aircraft to the Gulf Coast, thousands of additional lives would have been placed at risk or even lost. Integrated air medical resources are an essential component of contemporary EMS systems.

Today, financial pressures, insurance issues, changing federal regulations, and competition all are forcing changes, consolidation, and in many cases reduced services or closure of emergency departments, trauma centers, hospitals and specialty physicians. These factors have contributed to the increased use of AMS to move patients to specialty centers, particularly from outlying areas. As with EMS in general, there has been a general lack of overall system planning and design to guide the development and implementation of needed AMS. Mechanisms that might provide such guidance, such as state EMS or health regulations, certificate of need (CON) processes, and federal aviation and healthcare regulations sometimes conflict with one another, providing a jumble of uncoordinated hurdles to AMS providers.

The future of Air Ambulance Services

Maintaining access to care is an ever greater challenge for both healthcare providers and policy makers. Natural and man made disasters have highlighted the need for an effective, available air medical system. This was exemplified in the air medical response to victims of Hurricane Katrina in which thousands of lives were saved during both scene response and the evacuation of critically ill patients from hospitals. air ambulance service has been shown to be cost-effective when looking at total medical costs as well as lives saved.

Much like other effective healthcare interventions (such as trauma systems), technologies (such as CAT scans), and specialty surgeries (such as those for heart attacks patients), air ambulance service is expensive to maintain. It is essential that public policy and funding sustain air ambulance service as a critical part of the medical and emergency preparedness safety net in our communities. Maintaining the readiness to respond is as essential as the actual care delivered by air ambulance service.

According to the US Department of Health and Human Services, “It was estimated that in 2000 there were 605 million persons worldwide aged 60 years or older. This number is projected to increase to almost two billion by 2050.”  The trend is particularly noticeable in the U.S., with a rapidly aging population, especially in rural areas. The emergency medical needs of this population are reflected in the growing rates of trauma, as well as the increased occurrence of time-critical conditions such as heart attack, stroke, and non-trauma surgical emergencies (e.g. abdominal aneurysms and stomach/intestinal bleeding).

Recent studies examining the response to elderly trauma patients have found that many of these patients do not currently reach trauma centers in a timely manner.  As medical science creates new ways to intervene in medical emergencies with technology that must be utilized within a critical window of time, the need for air medical services to bring that technology to patients, or to bring patients to that technology, will increase.

Current financial pressures on the health care system will only increase. The mismatch between demand and resource availability is becoming more acute. These pressures will continue to erode the availability of hospital based delivery of specialty care and life-saving technologies, particularly in rural areas. The need for increased access to ever scarcer specialty care resources, and the increased need to make such care mobile will increase the need for air ambulance service.

The Flying Doctor Service in Australia is one successful model of providing both emergency and routine medical services by air to far-flung populations. The Association of Air Medical Services believes that it is essential to assure that every person has access to quality air medical and critical care transport when needed. It is imperative that policy and funding support the availability and sustainability of air ambulance service to every community.


Air Ambulance – Cerebrovascular Accidents / Strokes and “Brain Attacks”

Like heart attacks, some strokes are caused by interruption of blood predominately from a blood clot, only this time in the brain. As in heart attacks, there is a window of time (optimally within 90 minutes but generally no more than three hours) in which clotbusting treatment can result in patients suffering little to no long term damage and disability from these events. Therefore, patients transported to specialty centers for the clot-busting treatment of strokes can benefit from a well-coordinated ground and air system to accomplish early transfer.

Air Ambulance Safety by AMS

From 1972 through September, 2002, when HEMS safety research by Dr. Ira Blumen of the University of Chicago Aeromedical Network (UCAN) was completed, HEMS had flown approximately three million hours, transporting some two and three-quarter million patients.  In that time, there were 166 crashes involving HEMS, with 183 fatalities.  The UCAN study found that while the number of crashes each year has fluctuated, the number per 100,000 patients flown had dropped from 17.36 in 1980 to 5.5 in 2001.

The risk to patients, estimated over the years of the study, is reported as a fatality rate of 0.76/100,000 patients. Subsequent admission to a hospital carries with it a greater risk of death from complications or errors: various recent estimates range from 1.2/100,000 patents to 292/100,000 patients.

Nonetheless, any form of medical transport incurs inherent risk and in the past few years there have been increased numbers of accidents associated with the increased number of helicopters and transports. In an editorial comment in the UCAN study, a past president of the National EMS Pilot Association emphasizes that the causes of crashes haven’t changed over the years. The top three causes are “risk taking, pre-flight planning, and in-flight decisionmaking,” reflecting the unique pressure placed on crews by the condition of the patient and by the feelings of obligation to fly.

The air ambulance service community has taken significant steps, particularly in the area of aircrew resource management (a proven airline industry safety tool) to improve its safety for patients.  Some HEMS prograir ambulance service are replacing aircraft, hiring pilots to fly under Instrument Flight Rules (IFR), and employing new technologies such as night vision goggles (NVG’s) and terrain avoidance warning systems (TAWS), especially important when weather conditions abruptly change mid-mission.80 Transport medicine is among the most complex arenas of medicine, and is characterized by the need to provide immediate access to time-sensitive care for critically ill and injured patients at the same time that operations are conducted in hostile environmental conditions with limited planning time. As Justice Oliver Wendell Holmes once noted: “to be safe does not mean to be risk free.” Recognizing that risk cannot be completely eliminated, it is essential both for the public served, and the pilots, nurses, paramedics, physicians, and other health care providers who deliver care, that the practice environment be as safe as possible.

To that end, the Association of Air Medical Services has already initiated Vision Zero ( and has joined the International Helicopter Safety Team (IHST,, led by the American Helicopter Society (AHS), the Helicopter Association International (HAI), the Federal Aviation Administration (FAA), and Transport Canada to reduce helicopter accidents by 80% in the next ten years.

These initiatives seek more effective methods and approaches to avoiding errors in complex systems premised on the model that providers must work collaboratively, on a voluntary basis, with regulators to identify and accelerate the implementation of best practice standards. These efforts focus on developing and implementing strategies using cost benefit analysis and evidence based best practices related to safety in order to prioritize investment and financial plans to result in a goal of zero serious injuries or fatalities.